no, ne bastano tre [Pillole]

Maurizio Codogno

Matematto divagatore; beatlesiano e tuttologo at large. Scrivo libri (trovi l'elenco qui) per raccontare le cose che a scuola non vi vogliono dire, perché altrimenti potreste apprezzare la matematica.

L’anno scorso scrissi di come Terry Tao aveva dimostrato un teorema che si avvicina alla congettura di Goldbach, quella che afferma che ogni numero pari maggiore di 2 è esprimibile come somma di due numeri primi. Il teorema di Tao affermava che ogni numero dispari è esprimibile come somma di al più cinque numeri primi. Oggi Tao ha comunicato che Harald Helfgott è riuscito a dimostrare un risultato ancora migliore: ogni numero dispari maggiore di 5 è esprimibile come somma di tre numeri primi; la cosiddetta “congettura debole di Goldbach”. L’abstract al solito è su arXiv: sono solo 133 pagine.

(altro…)